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genotyping are compensated for by more precise estimates 
of parameters relevant for knowledge-based breeding, thus 
making an increase in marker density for linkage mapping 
attractive.

Introduction

Quantitative trait locus (QTL) mapping is well established 
in genetic studies of plants to unravel the genetic architec-
ture of quantitative traits and to identify QTL for knowl-
edge-based breeding. Despite the successful implementation 
of association mapping for crop genetics, the classical link-
age mapping in biparental populations still provides some 
advantages over the more recently established approaches. 
Especially for rare alleles, which would escape detection in 
association mapping approaches, linkage mapping offers a 
high QTL detection power due to the balanced allele fre-
quencies in segregating populations (Würschum 2012).

Owing to the rapid advances in sequencing technologies, 
huge numbers of SNPs can nowadays readily be identified 
(Yan et al. 2009). Consequently, the marker type of choice 
are SNPs, which are commonly applied using high-through-
put platforms. The availability of this novel source of high-
density genotyping is already well exploited in genome-
wide association mapping studies and genomic selection 
in maize (Zea mays L.) (Riedelsheimer et  al. 2012a, b).  
In contrast, linkage mapping studies in maize were, until 
now, mostly based on low-density genetic linkage maps 
constructed with simple sequence repeat (SSR) markers 
(e.g., Ma et al. 2007; Guo et al. 2011; Martin et al. 2012). 
This raises the question as to whether linkage mapping in 
biparental populations would profit from the exploitation of 
the available high-density SNP arrays or if that would be a 
waste of resources.

Abstract  High-density genotyping is extensively exploited  
in genome-wide association mapping studies and genomic 
selection in maize. By contrast, linkage mapping studies 
were until now mostly based on low-density genetic maps 
and theoretical results suggested this to be sufficient. This 
raises the question, if an increase in marker density would 
be an overkill for linkage mapping in biparental populations, 
or if important QTL mapping parameters would benefit from 
it. In this study, we addressed this question using experimen-
tal data and a simulation based on linkage maps with marker 
densities of 1, 2, and 5 cM. QTL mapping was performed for 
six diverse traits in a biparental population with 204 doubled 
haploid maize lines and in a simulation study with varying 
QTL effects and closely linked QTL for different popula-
tion sizes. Our results showed that high-density maps nei-
ther improved the QTL detection power nor the predictive 
power for the proportion of explained genotypic variance. 
By contrast, the precision of QTL localization, the precision 
of effect estimates of detected QTL, especially for small and 
medium sized QTL, as well as the power to resolve closely 
linked QTL profited from an increase in marker density from 
5 to 1 cM. In conclusion, the higher costs for high-density 

Communicated by J. Yan.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s00122-013-2155-0) contains supplementary 
material, which is available to authorized users.

M. Stange · H. F. Utz · T. A. Schrag · A. E. Melchinger 
Institute of Plant Breeding, Seed Science, and Population 
Genetics, University of Hohenheim, 70599 Stuttgart, Germany

T. Würschum (*) 
State Plant Breeding Institute, University of Hohenheim, 
70599 Stuttgart, Germany
e-mail: tobias.wuerschum@uni‑hohenheim.de

http://dx.doi.org/10.1007/s00122-013-2155-0


2564	 Theor Appl Genet (2013) 126:2563–2574

1 3

High-density maps could increase the probability that 
at least one marker is located in each intact chromosomal 
segment between two recombination breakpoints in the 
genome (Yu et  al. 2011). This could facilitate the detec-
tion of QTL within these linkage blocks. The number of 
recombination events and consequently the number and 
length of the linkage blocks depends on the population size 
(Yu et  al. 2011). The influence of population size, num-
ber of markers, and gene effects on QTL detection power 
and confidence intervals of detected QTL was analyzed by 
Darvasi et al. (1993) in a simulation study for interval map-
ping based on a backcross population. They concluded that 
a marker density of 10–20 cM is by far sufficient for pre-
cise QTL detection and that higher marker densities have 
no advantages irrespective of population size and size of 
genetic effects. In agreement with these findings, Piepho 
(2000) showed in an analytical approach that a marker den-
sity below 10 cM has only negligible effects on the stand-
ard error of genetic effect estimates and the power of QTL 
detection.

In contrast, comparing low- and high-density QTL map-
ping in barley, Hori et  al. (2003) concluded that higher 
marker densities are beneficial, since markers tightly linked 
to QTL are available that can be used directly for marker-
assisted breeding. Further, separate detection of two tightly 
linked QTL was only possible with the high-density map. 
A higher detection power and resolution of QTL mapping 
with a high-density SNP map compared to a low-density 
RFLP plus SSR map was also found by Yu et al. (2011) in 
rice, especially for QTL with small genetic effects. A higher 
precision of QTL localization with high-density SNP maps 
was also reported for maize by Shi et al. (2011) and Almeida 
et al. (2012). The power of separating linked QTL was ana-
lyzed by Li et al. (2010) in an inclusive composite interval 
mapping (ICIM) simulation study of DH lines with marker 
densities ranging from 5 to 40 cM. However, the above-men-
tioned studies did not exploit the current arrays of SNPs rou-
tinely applied in maize genotyping, which offer much higher 
marker densities (50 k). This leads to the question if high-
density genotyping, resulting in genetic linkage maps with a 
marker density of 1 cM, could further increase the power and 
precision of QTL mapping and enable a better resolution of 
tightly linked QTL with linkage distances below 10 cM.

To address the question, if high-density genotyping 
offers advantages for QTL mapping in biparental popula-
tions, we employed the same high-density linkage map in 
combination with both, experimental data and a simula-
tion study. In particular, the objectives of this study were 
to investigate the effect of high-density versus low-density 
linkage maps in QTL mapping on (1) the power of QTL 
detection, (2) the precision of QTL localization, (3) the 
estimation of QTL effects, and (4) the potential to resolve 
tightly linked QTL.

Materials and methods

Germplasm

This study was based on 227 DH lines derived from a 
biparental cross between UH009 and UH007 which was 
described in detail earlier by Stange et al. (2013). Shortly, 
the parental lines UH009 and UH007 are flint inbreds 
developed by the maize breeding program of the University 
of Hohenheim. All DH lines were developed using the in 
vivo method described by Prigge and Melchinger (2012), 
where F1 plants of each cross were pollinated by an inducer 
line followed by the identification of haploid seeds using 
an embryo color marker. Chromosome doubling was pro-
moted by colchicine treatment to produce D0 plants, which 
were then self-pollinated to produce the D1 generation.

Field experiments

All 227 DH lines and both parental inbred lines as duplicate 
entries were tested together with other lines in two 10 × 20 
α-designs with two replications. Experimental units were 
single-row plots with a length of 3 m, spaced 0.75 m apart, 
and comprising 20 plants. The trials were conducted in 
2  years at two locations in Southwest Germany, namely 
Stuttgart-Hohenheim and Eckartsweier.

Fusarium graminearum Schwabe causes Giberella 
ear rot (GER) which leads to contamination of grain with 
deoxynivalenol (DON) (Pestka 2007). The resistance of 
DH lines to GER, DON, and additionally, days to silk-
ing (DSI) were recorded in 2008 and 2009 as described in 
detail by Martin et  al. (2011). Briefly, artificial silk chan-
nel inoculation was performed using an aggressive isolate 
of F. graminearum on six (2008) or eight (2009) primary 
ears 5–6 days after silk emergence. At physiological matu-
rity, ears were manually dehusked and visually rated for 
GER severity. After manual harvest of the inoculated ears 
and drying to an approximate moisture content of 14  %, 
100  g of ground grain was taken for prediction of DON 
concentration on the natural log scale by near-infrared 
spectroscopy (NIRS) using the calibration of Bolduan et al. 
(2009b). Grain yield and related traits were recorded in 
2009. Primary ears from five non-inoculated plants per plot 
were manually harvested, dried down to constant weight, 
and shelled to determine the grain yield (GY) in g per 
plant. The 100-kernel weight (HKW) in g was determined 
from a sample of 300 kernels and kernel number (KN) per 
plant was determined by counting seeds.

Phenotypic data analyses

Standard lattice analyses of the six phenotypic traits of pop-
ulation UH009 ×  UH007 were performed using software 
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PLABSTAT (Utz 2005). For these analyses, GER severity 
data were transformed using the arcsine square root func-
tion to reduce heterogeneity of variances and to meet the 
normality assumption. The DON concentrations, predicted 
on the natural log scale, were back-transformed with the 
natural exponential function to approximate the values in 
milligrams per kilogram. Heritability (h2) on an entry-mean 
basis was estimated according to Hallauer et al. (2010).

Marker analyses and linkage map construction

The Illumina MaizeSNP50 Bead Chip (Illumina Inc. San 
Diego, USA) was used for genotyping all DH lines and their 
parental inbreds using bulks of up to six plants per line. For 
each SNP and DH line, the quality criteria as described in 
detail by Stange et al. (2013) were applied. In total, 7,063 
SNPs and 204 DH lines met these criteria and were used 
for all further analyses. In addition to the SNP analyses, the 
DH lines had been genotyped by 106 polymorphic SSRs, as 
described in detail by Martin et al. (2011). Linkage blocks 
of the DH lines of the experimental population for all ten 
chromosomes are shown in Figure S1.

In a first step, a framework map was constructed to clus-
ter the SNPs into linkage groups using software MSTMap 
(Wu et al. 2008). In a second step, SSRs were assigned to 
these linkage groups based on the linkage group informa-
tion from Martin et al. (2011) and the IBM2 2008 Neigh-
bors map accessible through the Maize Genetics and 
Genomics Database (Lawrence et al. 2008). Finally, chro-
mosome-wise genetic map construction was performed for 
the combined set of SNPs and SSRs using software Join-
Map 4.0 (Van Ooijen 2006) as described in detail by Stange 
et al. (2013). To assess the effect of different map densities 
on QTL mapping results, subsets of the full genetic map 
were constructed. Originating from this full genetic map 
with 7,169 SNP and SSR markers, we optimized the spac-
ing between markers as well as possible (Liu et  al. 2012) 
by choosing one marker per cM in polymorphic regions 
(MD = 1; 682 markers). Originating from this dense map, 
two more sparse maps with average marker densities in 
polymorphic regions of 2 (MD  =  2; 439 markers) and 
5 cM (MD = 5; 257 markers) were constructed.

QTL mapping

QTL mapping in the experimental population was based 
on adjusted entry means of DH lines averaged across envi-
ronments for all six traits. For DON concentration, QTL 
analyses were performed with means on the natural log 
scale, and for GER severity, means were back-transformed 
to percent values. The software PlabMQTL (Utz 2012) 
which applies Composite Interval Mapping (CIM) with a 
multiple regression approach (Haley and Knott 1992), was 

used for the detection of QTL positions and estimations 
of effects for all three marker densities (MD =  1, 2, and 
5 cM). The appropriate number of cofactors was chosen on 
basis of the smallest values of the modified Bayesian Infor-
mation Criterion (mBIC; Baierl et al. 2006). Critical LOD 
thresholds were determined empirically with 1,000 random 
permutations (Churchill and Doerge 1994) separately for 
each marker density averaged across all traits. Around each 
QTL, a 1-LOD support interval was specified. We applied 
an additive genetic model to fit positions and effects of 
QTL separately for each trait. To obtain unbiased estimates 
of QTL effects and of the proportion of genotypic vari-
ance explained by the QTL (pG), fivefold cross-validation 
(CV) was conducted with 2,000 runs (Utz et al. 2000). The 
proportion of genotypic variance explained by the additive 
QTL model was obtained as pG =  100 ×  R2

adj/h
2, where 

R2
adj is the adjusted coefficient of determination explained 

by the model and h2 is the heritability of the trait. The pG 
explained by individual QTL, expressed as normalized 
value in percent of pG, was calculated according to Prigge 
et al. (2012).

Names were assigned to QTL following the nomencla-
ture proposed by Schaeffer et  al. (2006), which combines 
the letter “q” for QTL, an abbreviation for the name of the 
trait, and a number for the QTL. For example, the third 
QTL detected for HKW was designated as “qhkw3”.

Simulation study

The simulation study was designed in dependence on the 
experimental population UH009 ×  UH007 and therefore, 
performed with the same three genetic linkage maps. We 
simulated five independent QTL (IQ1–IQ5) with addi-
tive genetic effects of 0.10, 0.20, 0.30, 0.50, and 0.75 on 
five separate chromosomes (1, 2, 4, 9, and 10) (Table S2). 
Each QTL was located in a polymorphic region nearest to 
the center of the respective chromosome. Chromosomes 
which best met this criterion were used to simulate the 
five independent QTL (IQ1–IQ5) and the remaining chro-
mosomes were used to simulate four pairs of linked QTL, 
LQ6a;LQ6b to LQ9a;LQ9b on chromosomes 3, 5, 6, and 
8 (Table S2). For the pairs of linked QTL, two genetic dis-
tances (5 and 10 cM) and two linkage phases (coupling and 
repulsion) were assumed. The pairs of linked QTL were 
located in polymorphic regions of the four chromosomes. 
The additive genetic effects of both QTL per pair were set 
to 0.75 with different directions to simulate the two linkage 
phases. No interactions between all simulated QTL were 
assumed and no QTL was simulated on chromosome 7 to 
assess the false discovery rate. The heritability of the simu-
lated trait was set to 0.75 which approximately corresponds 
the mean heritability of the six phenotypic traits of popula-
tion UH009 × UH007.
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A base population consisting of 220,000 DH lines was 
generated by crossing two parental inbred lines using 
software PLABSIM (Frisch et  al. 2000). From this base 
population, the mapping populations were sampled with 
N = 110 (2,000 sets), 220 (1,000 sets), and 440 (500 sets). 
All three population sizes in combination with the linkage 
maps with three marker densities (MD = 1, 2, and 5 cM) 
were used for composite interval mapping (CIM) with an 
additive model in software PlabMQTL (Utz 2012) in the 
same way as described before for the six traits of the exper-
imental population UH009 × UH007. To obtain unbiased 
estimates of QTL effects and pG values, CV was conducted 
for all sets of a given population size with 20 fivefold 
CV runs. Critical LOD scores were determined empiri-
cally with 20 random permutations (Churchill and Doerge 
1994) separately for each set of population size samples 
and marker density. The number of selected cofactors, the 
genome-wide number of detected QTL, pG-DS estimated in 
the data set, and the cross-validated pG-TS were evaluated 
averaged across all sets of a given population size.

For the independent QTL (IQ1–IQ5) and the pairs 
of linked QTL (LQ6a;LQ6b to LQ9a;LQ9b), the LOD 
scores and for IQ1–IQ5 also the 1-LOD support inter-
vals around each QTL were averaged across all sets of 
a given population size. Chromosome-wise precision 
of QTL detection was evaluated for all simulated QTL 
averaged across all sets of a given population size as the 
deviation between (1) the simulated QTL position and the 
estimated QTL positions in cM and between (2) the ref-
erence genetic effects and the estimated genetic effects. 
The statistical power of QTL detection was calculated 
for IQ1–IQ5 as the frequency with which the simulated 
QTL was correctly identified within a predefined interval 
of ±5  cM centered around the predefined QTL position 
among all sets of a given population size. Following Li 
et  al. (2010), QTL detected on the chromosome, where 
no QTL was located (chromosome 7) or detected outside 
the predefined interval, were assumed to be false posi-
tive QTL. False discovery rate (FDR) was calculated as 
the proportion of false positives in all simulation sets for a 
given population size.

The power to resolve linked QTL (e.g., separate detec-
tion of LQ6a and LQ6b) was evaluated for QTL linked in 
coupling phase as frequency of QTL detected in one of 
three regions calculated across all sets of a given popula-
tion size. Two regions were defined as interval ranging 
±1 cM around the predefined QTL position, and the third 
region comprised the ghost QTL (GQ) region in between 
the two defined QTL intervals (Figure S2). In addition, the 
power to separately detect both QTL, e.g., LQ6a;LQ6b, 
was assessed. For QTL linked in repulsion phase two 
regions surrounding the QTL were defined.

Results

Experimental data: QTL mapping

Phenotypic analyses of DH lines of population UH009 
× UH007 were performed in two earlier studies by Mar-
tin et  al. (2012) and Stange et  al. (2013). Significant 
(P < 0.01) genotypic variances were observed for all six 
traits. Heritabilities were highest for HKW and DSI (87 
and 89 %), slightly lower for GY and KN (75 and 76 %), 
and lowest for DON and GER (64 and 70 %). Both paren-
tal inbred lines are from the flint heterotic pool and the 
full genetic linkage map with 7,169 markers based on this 
population showed several large monomorphic regions. 
We arbitrarily defined monomorphic chromosomal 
regions larger than 20  cM as identical-by-descent (IBD) 
regions. Based on this criterion approximately 27  % of 
the genome may be IBD in this cross with particularly 
large IBD regions on chromosome 3 (approximately 
66 %) (Figure S3).

QTL mapping using the highest marker density 
(MD = 1) identified QTL for all six traits (Table S1). For 
each trait, the relative distribution of effect sizes of the 
detected QTL indicated that only QTL with medium or 
large effects were identified, but no QTL with small effects. 
Five pairs of linked QTL were detected for DSI, KN, HKW, 
and GY, whereof three pairs were located on chromosome 
1 (for DSI, HKW, and GY), one pair on chromosome 2 (for 
HKW), and one pair on chromosome 10 (for KN) (Fig. 1, 
Table S1). The distance between linked QTL ranged from 
18 to 215 cM. All pairs of linked QTL on chromosome 1 
were in repulsion phase, whereas the other two were linked 
in coupling phase.

We next performed QTL mapping in this population 
based on two sets of genetic linkage maps with reduced 
marker density. While the full genetic linkage map had 
a marker density of approximately 1  cM in polymor-
phic regions, the two genetic maps with reduced marker 
density (MD = 2 and MD = 5) were generated as sub-
sets of markers from the full map with equally spaced 
markers every 2 and 5  cM, respectively. Across all six 
traits, we observed no consistent effect of the marker 
density on number of selected cofactors, number of 
detected QTL, or proportion of genotypic variance (pG) 
explained by the detected QTL in the data set and cross-
validated in the test set (Table 1). In contrast, the mean 
length of the support intervals of the detected QTL was 
substantially reduced with increasing marker density for 
five of the six traits (Fig. 1; Table 1). The map positions 
of detected QTL were similar between marker densi-
ties except for the HKW QTL on chromosomes 1 and 9 
(Fig. 1).
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Simulation study: effect of marker density and population 
size on QTL mapping

To further address the effect of marker density on QTL map-
ping in biparental populations as well as a possible interac-
tion between the marker density and the population size, we 
performed a simulation study in which we varied the marker 
density and population size. Whereas the LOD thresh-
olds were slightly more stringent under the highest marker 

density (MD = 1), the number of selected cofactors, detected 
QTL, and the proportion of explained genotypic variance in 
the data set and in the test set were of similar magnitude for 
all three marker densities (Table S3). These parameters were, 
however, affected by population size and the number of QTL 
as well as the proportion of genotypic variance explained by 
them increased with increasing population size.

For the QTL located isolated on separate chromo-
somes (IQ1–IQ5), we found that the QTL detection power 
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Fig. 1   Chromosome-wise LOD scores of QTL detected in the experi-
mental population UH009 × UH007 for days to silking (DSI), kernel 
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in the respective color at the bottom of each plot (color figure online)



2568	 Theor Appl Genet (2013) 126:2563–2574

1 3

increased strongly with increasing QTL effect size and 
population size (Table  2). In contrast, marker density did 
not affect the QTL detection power. With regard to the 
estimated additive genetic effects of the QTL IQ1–IQ5, 
we observed that their overestimation was strongest for 
the smallest population (N  =  110) and decreased with 
increasing population size (Table 3). For all combinations 
of marker density and population size, the cross-validated 
QTL effects were less overestimated as compared to effect 
estimation in the full data sets. Interestingly, we observed 
that the accuracy of these cross-validated effect estimates 
was dependent on the size of the QTL effect and on the 
marker density. This was most pronounced for the small-
est population size, but also discernable for the larger 
populations. For the smallest population, only the larg-
est QTL (IQ5) was estimated accurately under the lowest 
marker density (MD = 5), whereas for the highest marker 
density (MD = 1) medium to large effect QTL (IQ3–IQ5) 
were estimated accurately. The size of the support interval 
decreased with increasing population size and QTL effect 
size, but was also affected by the applied marker density 
(Figs.  2, 3a, b). Higher marker densities reduced the size 
of the support interval. By contrast, the deviation between 
estimated and reference QTL position and the LOD score 
were not affected by the marker density (Figure S4). The 
FDR decreased with increasing population size and slightly 
increased with increasing marker density which is in agree-
ment with an increased QTL detection power with increas-
ing marker density. However, the standard errors of FDR 
indicated that these slight differences between MD  =  1, 
MD = 2, and MD = 5 were not significant (Table S4).   

The simulation study also included chromosomes with 
two QTL to evaluate the power to resolve QTL linked in 
coupling or repulsion dependent on the applied marker 
density. For QTL in coupling, we defined an interval 
around each QTL as well as a ghost QTL region between 
them and assessed the frequency with which QTL were 
detected in each region (Figure S2). For QTL linked in 
repulsion only two regions, each surrounding a QTL, were 
defined. For QTL with a genetic map distance of 5  cM 
linked in coupling phase (LQ6a;LQ6b), a higher power 
to separately detect them was observed with the highest 
marker density (MD = 1) for all population sizes as com-
pared to the detection of the ghost QTL (GQ6), located in 
the interval between them (Table 2; Fig. 3c, d). In contrast, 
with the lower marker densities (MD =  2 and MD =  5), 
the frequency of the detection of the ghost QTL increased 
strongly at the expense of the separate detection of the 
true QTL. Surprisingly, this effect was more pronounced 
with increasing population size. When the genetic map 
distance between the linked QTL was increased to 10 cM 
(LQ7a;LQ7b), the effect of the marker density on the power 
to separately detect the true QTL instead of the ghost QTL Ta
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was confirmed. The power to detect both true QTL simul-
taneously was always substantially higher for the highest 
marker density (MD = 1) and higher for the QTL separated 
by a larger genetic map distance (LQ7 as opposed to LQ6). 
The power to detect the QTL linked in repulsion, either 
separately or simultaneously, was always close to zero.

Discussion

For many crops high-density genotyping can nowadays rou-
tinely be applied. Alternatively, customized arrays with lower 
marker densities are available at reduced costs. Whereas high-
density genotyping is certainly advantageous for associa-
tion mapping or genomic selection, it may be an overkill for 

linkage mapping in biparental populations. The population 
UH009 × UH007 consists of 204 DH lines and high geno-
typic variances and heritabilities comparable to those reported 
previously were observed for all traits (Ali et al. 2005; Bold-
uan et al. 2009a; Buckler et al. 2009; Hallauer et al. 2010). 
The plants were subjected to high-density genotyping, result-
ing in highly saturated genetic linkage maps. Based on these 
genetic linkage maps, a combination of experimental data 
analysis and a simulation study was used to address the effect 
of marker density on QTL mapping in biparental populations.

Regions of IBD

Especially plants related by pedigree or com-
ing from the same heterotic group are expected to be 

Table 2   Power (%) of QTL detection for five simulated inde-
pendent QTL (IQ1–IQ5) with additive genetic effects from 0.10 
to 0.75, two pairs of linked QTL in coupling phase (LQ6a;LQ6b 
and LQ7a;LQ7b), and two pairs of linked QTL in repulsion phase 

(LQ8a;LQ8b and LQ9a;LQ9b) based on three marker densities 
(MD =  1, 2, and 5  cM) and three population sizes (N =  110, 220, 
and 440)

a   Predefined interval borders used to determine the QTL detection power
b   GQ ghost QTL detected in the interval between the linked QTL in coupling phase

QTL N = 110 N = 220 N = 440

MD = 1 MD = 2 MD = 5 MD = 1 MD = 2 MD = 5 MD = 1 MD = 2 MD = 5

Independent QTL

 IQ1 (167–177)a 0.2 0.5 0.3 0.7 0.6 0.5 0.8 0.8 0.6

 IQ2 (110–120) 0.9 1.3 1.6 5.1 4.5 4.1 10.6 11.0 9.4

 IQ3 (85–95) 5.6 4.9 4.9 19.7 18.0 17.3 54.0 51.2 48.4

 IQ4 (96–106) 29.1 28.3 29.6 67.9 69.2 70.5 91.6 91.4 95.4

 IQ5 (57–67) 71.0 69.4 69.4 91.9 90.5 92.5 98.6 99.0 99.4

Linked QTL with a distance of 5 cM in coupling phase

 LQ6a;LQ6b (29–31; 
34–36)

1.8 0.9 0.9 1.5 0.6 0.6 28.0 1.4 1.4

 LQ6a (29–31) 35.8 24.5 20.3 37.8 19.0 12.4 51.0 8.4 6.0

 LQ6b (34–36) 30.5 15.4 22.9 30.1 8.2 17.9 38.6 2.8 9.4

 GQ6b (32–33) 19.7 45.5 42.8 27.3 69.3 66.6 27.6 88.2 84.0

Linked QTL with a distance of 10 cM in coupling phase

 LQ7a;LQ7b (94–96; 
104–106)

5.6 4.7 2.7 17.2 13.6 6.6 82.4 77.2 23.4

 LQ7a (94–96) 27.3 18.7 10.6 30.9 17.5 7.2 67.4 57.2 13.0

 LQ7b (104–106) 22.0 26.4 15.3 17.2 34.6 10.6 64.2 69.8 12.6

 GQ7b (97–103) 40.1 42.0 61.3 38.8 45.7 77.4 34.6 30.6 77.8

Linked QTL with a distance of 5 cM in repulsion phase

 LQ8a;LQ8b (64–66; 
69–71)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2

 LQ8a (64–66) 0.5 0.0 0.0 0.1 0.1 0.0 0.2 0.2 0.0

 LQ8b (69–71) 0.0 0.0 0.0 0.2 0.2 0.3 0.2 0.2 0.2

Linked QTL with a distance of 10 cM in repulsion phase

 LQ9a;LQ9b (59–61; 
69–71)

0.1 0.1 0.0 0.0 0.2 0.0 1.0 1.6 1.2

 LQ9a (59–61) 0.3 0.3 0.1 1.0 0.8 0.2 1.6 1.8 0.8

 LQ9b (69–71) 0.3 0.3 0.4 0.4 0.5 0.6 1.6 1.2 1.6
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identical-by-descent for some chromosomal regions. Con-
sequently, no polymorphic markers will be available for 
these regions resulting in larger gaps in the genetic link-
age maps, irrespective of the applied genotyping density. 
Population UH009 × UH007 showed several large mono-
morphic regions which were arbitrarily defined as IBD if 
they exceeded 20 cM (Figure S3). Based on this criterion, 
approximately 27  % of the entire genome may be IBD, 
potentially explaining the gaps observed in our linkage 
map. The interpretation of these gaps as IBD is substanti-
ated by the fact that markers located in these regions are 
represented on the array and are known to be polymorphic 
in the breeding germplasm from which the two parents are 
derived. Another consequence of these IBD regions is that 

they will not contribute to the genotypic variance in that 
cross. Thus, in the population presented here only approx-
imately three quarters of the genome will add to the new 
genetic variation that can be exploited to select superior 
lines.

Influence of marker density on QTL detection power

In our study, LOD thresholds were determined separately 
for each marker density and population size as a uniform 
LOD threshold cannot be assumed for diverse experimental 
data sets. The thresholds obtained with the highest marker 
density were slightly more stringent than those from the 
lower marker densities (Table S3), but this difference 
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Fig. 2   Mean 1-LOD support intervals (SI; ±standard deviations 
as vertical lines) for the QTL IQ1–IQ5 with additive genetic effects 
from 0.10 to 0.75, respectively. Means and standard deviations are 

averages across all sets for a given population size based on three 
marker densities (MD =  1, 2, and 5  cM), respectively (color figure 
online)

Table 3   Estimated additive 
genetic effects in data sets 
(DS) and in test sets (TS) of 
fivefold cross-validation for 
five simulated independent 
QTL (IQ1–IQ5) with reference 
additive genetic effects from 
0.10 to 0.75 based on three 
marker densities (MD = 1, 2, 
and 5 cM) and three population 
sizes (N = 110, 220, and 440)

a   Reference additive genetic 
effects are given in brackets

QTL MD = 1 MD = 2 MD = 5

DS TS DS TS DS TS

N = 110

 IQ1 (0.10)a 0.53 0.35 0.55 0.29 0.57 0.21

 IQ2 (0.20) 0.55 0.41 0.54 0.28 0.55 0.27

 IQ3 (0.30) 0.56 0.34 0.57 0.35 0.58 0.37

 IQ4 (0.50) 0.62 0.46 0.63 0.46 0.64 0.41

 IQ5 (0.75) 0.79 0.72 0.79 0.72 0.80 0.72

N = 220

 IQ1 (0.10) 0.39 0.13 0.39 0.15 0.39 0.17

 IQ2 (0.20) 0.40 0.24 0.41 0.25 0.41 0.23

 IQ3 (0.30) 0.43 0.30 0.44 0.30 0.44 0.31

 IQ4 (0.50) 0.53 0.47 0.54 0.47 0.54 0.47

 IQ5 (0.75) 0.76 0.74 0.76 0.74 0.77 0.75

N = 440

 IQ1 (0.10) 0.30 0.15 0.32 0.21 0.32 0.25

 IQ2 (0.20) 0.32 0.21 0.32 0.22 0.33 0.23

 IQ3 (0.30) 0.35 0.28 0.36 0.29 0.35 0.28

 IQ4 (0.50) 0.51 0.49 0.51 0.49 0.51 0.50

 IQ5 (0.75) 0.75 0.74 0.76 0.74 0.76 0.75
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appears negligible and should not substantially affect the 
QTL detection power. Consistently, we observed no effect 
of the marker density on the QTL detection power neither 
in the experimental data nor in the simulation study with 
independent QTL (Tables 1, 2). This is in agreement with 
theoretical results from Piepho (2000) showing that the 
power of QTL detection for interval mapping in a back-
cross population changed only slightly with an increase in 
marker density below 10  cM. It must be noted, however, 
that the power to detect small simulated effect QTL (IQ1 
and IQ2) was low, irrespective of the applied marker den-
sity and population size. With population sizes routinely 
applied in QTL mapping (100–200 individuals), only major 
QTL like the simulated IQ5 can be detected with sufficient 

power while already for the medium effect QTL the power 
appears insufficient for reliable detection.

The LOD scores of the detected QTL were similar 
between marker densities for the simulated QTL IQ1–IQ5 
but concordant with the QTL detection power, increased 
with population size and also with an increasing genetic 
effect (Figure S4). This is in agreement with results 
reported by Li et al. (2010) for IM and ICIM. However, in 
contrast to our results, Li et al. (2010) observed an increase 
in LOD scores with increasing marker density, but these 
differences between marker densities diminished with 
decreasing population size. The differences between our 
results and results reported by Li et  al. (2010) might be 
explained by different levels of marker densities. Li et  al. 
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Fig. 3   Average LOD scores for independent QTL (a) IQ4 on chro-
mosome 9 and (b) IQ5 on chromosome 10, and for linked QTL 
in coupling phase (c) LQ6a;LQ6b on chromosome 3, and (d) 
LQ7a;LQ7b on chromosome 6. LOD scores are averages across 

all sets for a given population size based on three marker densities 
(MD = 1, 2, and 5 cM), respectively. Horizontal lines indicate LOD 
thresholds determined empirically with 20 random permutations sep-
arately for each population size and MD
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(2010) used MD = 40 as low density and MD = 5 as high 
density, whereas in our study MD = 5 was used as low den-
sity, and MD = 1 as high density. Consequently, already the 
lowest marker density (MD = 5) used in our study appears 
sufficient to reach high LOD scores, which are not further 
increased by applying higher marker densities.

Consistent with the unaffected QTL detection power, 
experimental and simulation results also showed that the 
increase in marker density from 5 to 1  cM did not result 
in a gain with regard to the proportion of genotypic vari-
ance explained by the detected QTL (Table  1; Table S3). 
Taken together, high-density genotyping does not increase 
the QTL detection power or the proportion of genotypic 
variance explained by the QTL which is a key parameter in 
marker-assisted selection.

Estimation of QTL effects

The relative distribution of QTL effects in popula-
tion UH009  ×  UH007 indicated that for each trait only 
medium or large effect QTL were identified, but no QTL 
with small effects (Table S1). This raises the question if 
in this population only medium and large effect QTL are 
segregating for the examined traits or, if small effect QTL 
are present but escape detection due to insufficient QTL 
detection power. Alternatively, they may be detected but 
with overestimated effect size. To address this question, 
we simulated five QTL (IQ1–IQ5) with reference effects 
from 0.10 to 0.75 and evaluated the accuracy of effect esti-
mates dependent on the population size and marker den-
sity. We observed that overestimation of effects was less 
biased after cross-validation and that the bias decreased 
with increasing reference effect and increasing population 
size (Table 3). This is in agreement with results reported 
by Darvasi et  al. (1993), Utz et  al. (2000), and Li et  al. 
(2010). Interestingly, we observed as a general trend that 
the increase in marker density from 5 to 1  cM resulted 
in more precise effect estimates, especially for small and 
medium effect QTL. Together with the results on the QTL 
detection power, this indicates that the relative effect dis-
tribution in the experimental population is likely caused by 
insufficient power to detect small effect QTL, but that also 
some small or medium effect QTL may have been detected 
but with overestimated effect sizes. In applied plant breed-
ing, population sizes are often fixed and an increase is not 
feasible. Our results indicate that the investment in higher 
marker density may pay off as more accurate QTL effect 
estimates can be obtained.

Precision of QTL localization

The 1-LOD support interval (SI) is often used to deter-
mine the precision of the QTL position estimates. The 

average length of SIs across all detected QTL in popula-
tion UH009 × UH007 was short with 12.9 cM and ranged 
from 3 to 58 cM (Table S1). The longest SI was observed 
for the QTL detected for GY on chromosome 3 which is 
located at the end of a chromosomal region with high 
marker coverage followed by an approximately 30 cM long 
IBD region (Figure S3). The wide LOD peak of this QTL 
stretched over the entire IBD region until the next polymor-
phic region, thus explaining the large SI. In addition, four 
out of five SIs with a length between 20 and 30 cM showed 
relatively flat and broad LOD peaks which may be due to 
the number and positions of the selected cofactors. Even 
with the lowest marker density (MD = 5), the average SI 
length (18 cM) of QTL detected for GER was shorter com-
pared to a previous study in this population (23 cM) based 
on a low-density SSR map (Martin et al. 2012). The large 
SI length observed by Martin et al. (2012) is in agreement 
with results reported by Ali et al. (2005) for Gibberella ear 
rot severity, where QTL localization was also rather impre-
cise due to the low-density map with an average marker 
density of only 13.8 cM.

Comparison of the average length of SIs between 
marker densities in population UH009 ×  UH007 showed 
a decrease of SI length with increasing marker density for 
five of the six traits (Table  1). This is in agreement with 
our simulation results where the SI length decreased with 
increasing marker density regardless of QTL effect and 
population size (Fig. 2). This effect of the marker density 
on the precision of QTL localization can be well seen by 
the progressively narrower LOD peaks with increasing 
marker density (Figs. 1, 3a, b). The standard deviations of 
the SI indicate a bias in their estimation which decreased 
with increasing QTL effect and population size (Fig.  2). 
In contrast to the clear trend of shorter SIs with increasing 
marker density, the accuracy of QTL localization was not 
affected by marker density regardless of QTL effect size 
and population size (Figure S4). Nevertheless, increasing 
marker density can improve the precision of QTL localiza-
tion, especially for medium to large effect QTL and thus, 
might increase the efficiency of marker-assisted selection.

Resolution of linked QTL

The probability to detect two linked QTL separately is 
increased if they are separated by a marker interval without 
a QTL (Li et  al. 2010). In total, five pairs of linked QTL 
were detected with the highest marker density in popula-
tion UH009 ×  UH007 with large linkage distances rang-
ing from 46 to 215 cM (Table S1). To address the question 
if closely linked QTL can be better separated with higher 
marker densities, we performed a simulation study with 
QTL linked at 5 (LQ6) and 10  cM (LQ7). A well-recog-
nized problem of linked QTL is that a ghost QTL can be 
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detected as an artifact between the true QTL (Doerge 
2002). Li et al. (2010) found that QTL linked at 10 cM dis-
tance could not be dissected with their highest marker den-
sity (MD = 5) even with large population sizes of up to 500 
individuals. Only when the linkage distance was increased 
to 20 or 30 cM could these QTL be separated.

We observed that for all population sizes higher marker 
densities were beneficial as they increased the power to 
detect the true QTL as opposed to the ghost QTL (Table 2). 
The increasing power for the ghost QTL with increas-
ing population size is likely caused by the higher error of 
QTL estimates with small population sizes which, seem-
ingly increases the power to detect the true QTL. Often-
times more frequent detection of the ghost QTL for LQ7 
compared to LQ6 can be explained by the larger interval 
defined for the ghost QTL of LQ7 (6 versus 2  cM). Due 
to the small interval of GQ6, more QTL fell into the inter-
vals of LQ6a and LQ6b resulting in a higher power com-
pared to GQ6. The power to simultaneously detect both 
true QTL was lower for the more closely linked QTL LQ6 
as compared to LQ7. Significantly, for both LQ6 and LQ7, 
this power increased substantially by increasing the marker 
density from 5 to 1  cM. For example, with a population 
size of N = 440, the power for simultaneous detection of 
both LQ7 QTL was 23.4 % with an average marker spacing 
of only 5 cM which more than tripled with the increase in 
marker density to an average spacing of 1 cM.

In order to avoid declaring a shoulder of a QTL peak 
as separate QTL, QTL mapping software often requires a 
minimum distance between two putative QTL. Owing to 
the previously employed low marker densities, this param-
eter has traditionally been set at distances (e.g., 10  cM) 
that are too large to enable the separate detection of QTL 
linked as closely as in our simulation study. An important 
consequence of our finding with high marker densities for 
separate detection of closely linked QTL (5 cM) is that for 
QTL mapping this threshold distance between potential 
QTL is reduced (in our example to 3  cM). In contrast to 
the QTL linked in coupling, QTL linked in repulsion phase 
could not be detected irrespective of the marker density. 
Taken together, marker density is a major factor affecting 
the power to resolve linked QTL which illustrates another 
potentially beneficial effect of high-density genotyping.

Conclusions

In this study, we investigated whether high-density maps 
with a marker density of 1  cM offer advantages in QTL 
mapping compared to low-density maps with regard to 
parameters relevant for plant breeding. High-density maps 
had no effect on the QTL detection power or the predictive 
power for the proportion of explained genotypic variance. 

By contrast, the precision of effect estimates, especially 
for small and medium sized QTL, the precision of QTL 
localization, as well as the power to resolve linked QTL 
profited from an increase in marker density. Thus, for QTL 
detection aiming at identifying QTL for marker-assisted 
selection, the more precise estimates of these relevant 
parameters may outweigh the higher costs of high-density 
genotyping.
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